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The steady motion of a liquid drop in another liquid of comparable density and 
viscosity is studied theoretically. Both inside and outside the drop, the Reynolds 
number is taken to be large enough for boundary-layer theory to hold, but small 
enough for surface tension to keep the drop nearly spherical. Surface-active 
impurities are assumed absent. We investigate the boundary layers associated 
with the inviscid first approximation to the flow, which is showii to be Hill’s 
spherical vortex inside, and potential flow outside. The boundary layers are 
shown to perturb the velocity field only slightly at  high Reynolds numbers, and 
to obey linear equations which are used to find first and second approximations 
to the drag coefficient and the rate of internal circulation. 

Drag coefficients calculated from the theory agree quite well with experimental 
values for liquids which satisfy the conditions of the theory. There appear to be 
no experimental results available to test our predictionof the internal circulation. 

1. Introduction 
Let us consider the steady motion, under gravity for example, of a drop of one 

liquid in another immiscible liquid of comparable density and viscosity, when 
the Reynolds numbers of both the internal circulation and the exterior flow are 
large. We assume that the surface tension pressure is very much larger than either 
the exterior or the interior dynamic pressure, so that the drop is nearly spherical. 
Finally, we assume that the interface is free from surface-active agents so that 
surface tension gradients are negligible (see Harper, Moore & Pearson 1967). 

These assumptions simplify the problem enough t o  permit some progress with 
an  analytical solution of the equations of motion without preventing flows satis- 
fying them from being experimentally realized (see $9).  The absence of any rigid 
surface in the flow means that a t  sufficiently large Reynolds numbers the velocity 
is nowhere very different from what it would be in an ideal fluid. This observa- 
tion was first made by Levich (1949) for the special case of a gas bubble, for which 
the ideal flow is just potential flow past a sphere. However, the surface of the 

t Now at  the Department of Mathematics, Victoria University of Wellington, New 
Zealand. 
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bubble must be tangentially stress-free; i.e. the tangential viscous stress com- 
ponent must be continuous across the surface. This condition is not satisfied by 
the ideal flow, so that a thin boundary layer forms a t  the bubble surface. As 
velocity perturbations are everywhere small in the layer, the governing equations 

Potential 

FIGURE 1. The form of the boundary layers and wakes. Diagonally shaded: the stress- 
induced viscous boundary layer (§  3). Dotted : the inviscid stagnation regions and wakes 
( 0  3). Cross-hatched : the inner viscous boundary layer near the rear stagnation point ( I  6). 

are linear, to a first approximation. Moore (1963)t discussed the detailed structure 
of this boundary layer and showed that it separated at the rear stagnation point 
of the bubble to form a thin wake. 

Several authors (Conkie & Savic 1953; Garner & Haycock 1959; Chao 1962; 
Winnikow & Chao 1966) have pointed out that the analogous ideal flow for a 
drop is still potential flow outside it, with Hill’s (1894) spherical vortex inside. 
They recognized that there would have to be a boundary layer at  the drop’s 
surface, but did not discuss the separation of the layer at the rear stagnation 
point in sufficient detail. Clearly, fluid discharged there from the interior bound- 
ary layer will move forwards in an interior ‘ wake ’ to re-enter the boundary layer 
at the front stagnation point (see figure 1). An adequate discussion of the bound- 
ary layer cannot be given unless the structure of the internal wake is taken into 
account. Winnikow & Chao’s analysis, which assumed that no vorticity entered 
either the exterior or the interior boundary layer at the front stagnation point, 
is thus incorrect, except for the special case of a gas bubble where the internal 
flow has negligible effect on the external flow. 

In  $2 we discuss the spherical vortex and potential flow; by calculating their 
viscous dissipation we obtain a first approximation to the drag coefficient of the 
drop. In 4 3 we consider in detail the structure of the boundary layers and of the 
interior wake. The separation and reattachment of the interior boundary layer 
are discussed with the aid of analysis developed in DM for the gas bubble. Dif- 
fusion of vorticity is negligible in the interior and the separation and reattach- 

t Henceforth referred to as DM. 
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ment regions, and the compatibility of the ejected and re-entrant vorticity dis- 
tributions is shown to lead to an integral equation for the starting profile of the 
interior boundary layer. This integral equation is used in $4 to obtain a first 
approximation to the momentum defect in the exterior wake, and hence the 
drag. It confirms the result of $2; that it should is a necessary condition for the 
validity of the analysis, not satisfied by Winnikow & Chao’s first approximation. 

The method of numerical solution of our integral equation is given in $5; 
analytic work will be described elsewhere. It leads to the following approximate 
expression for the strength of the Hill’s spherical vortex (equation (5.15)): 

where po and p1 are the viscosities and po,pl the densities of the outer and inner 
fluids respectively, and where R, is the Reynolds number 2up,U/p,, U being the 
speed of the drop and a the radius. 

In  order to find a better approximation to the drag than that of $2, the flow 
near the stagnation points must be examined more closely than in 9 3. The flow 
pattern is described in $ 6  and a momentum-integral approximation for the 
boundary layers near the stagnation points is found in $ 7. The results of $95, 6, 7 
are used in $ 8 to find the drag coefficient up to terms O(R&, thereby improving 
on the result of $2, which gave only the term O ( R i l ) .  

2. The first approximation to the flow 
We use spherical polar co-ordinates (Y, 0,$) whose centre 0 is at  the centre of 

the drop and whose axis Oz is antiparallel to the undisturbed uniform stream with 
velocity U at infinity. Then the flow outside the drop, whose surface is given to a 
first approximation by the sphere r = a, is the potential flow 

- 
$,, = - & Ur2 sin2 0( 1 - a3/r3), (2.1) 

where go is the Stokes streamfunction. We subscript flow quantities outside the 
drop with a ‘,’ and inside with a ‘ l ’ ;  subscript ‘i’ takes the values 0 , l .  Otherwise 
the notation is the same as that of DM, so that (?jil., ?&, 0) are the spherical polar 
velocity components, an overbar denotes quantities corresponding to the first 
approximation, and its absence those of the second approximation. 

Inside the drop the fluid particles move in closed paths, so that the vorticity 
must be completely diffused (Batchelor 1956). This condition and the condition 
that r = a is a stream-surface is satisfied uniquely by Hill’s spherical vortex, for 
which 

$l = +Ar2sin20(a2-r2). 

As pointed out by Batchelor (1956), this happens to be an exact solution of 
the full Navier-Stokes equations, and so is Po, being the streamfunction of 
a potential flow. These solutions therefore satisfy both the equations of motion 
and the condition that T = a is a streamline. I n  addition, the tangential velocity 
components ?ji0 are taken to be continuous at  r = a. As is well known, this requires 

- 
(2.2) 

that 

24 
A = 3U/(2a2) (2.3) 
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(see Lamb 1932, p. 246). The tangential stress components pire at r = a are now 
determined, and we find that 

pore = - 3p0 Ua-lsine, 

plrs = #pl Ua-1 sin 6, 

where pi are the dynamic viscosities outside and inside. Obviously there must 
always be a discontinuity of shear stress a t  the surface of the drop, and the 
flow field qi defined by (2.1), (2.2) and (2.3) cannot be an exact solution of the 
problem. 

The choice of the rate of internal circulation implied by (2.3) is, strictly speak- 
ing, not yet justified. However, we remark that it makes the stresses near the 
bubble surface O(pi Ua-l). I f  we did not insist on continuity of the tangential 
velocity across r = a, the discontinuity would give rise to a viscous smoothing 
layer, in which the tangential stress would be O(pi Ua-lR!). It seems reasonable 
to suppose that the internal motion will adjust itself to remove this larger stress. 

There will also be a discontinuity of normal stress across the surface, arising 
primarily from the different hydrostatic pressures inside and out, whose effect 
will be to distort the drop from spherical shape. Our assumption of large surface 
tension enables us to neglect the distortion (but severely limits the range of 
experiments to which the theory can be applied). 

In  order to assess the validity of our approximation that the solution is nearly 
$%, let us think of the uniform stream as being subject to a surface stress -Fro, 
acting in the surface r = a, where -KO is just such as to annul the stress dis- 

(2.6) 
continuity. Thus 

&j = 3 Ua-l(pu, + #pl) sin 0, 

and qi is an exact solution of this modified problem, and we can ask how it would 
respond if the imposed stress distribution -Fro were to be 'switched off'.t A 
more detailed discussion will be found in $3, but we can see that the change in- 
duced in the first approximation should be small, so long as both the external 
and internal Reynolds numbers, R, and R,, defined by 

(2.4) 

(2 .5 )  

- 

- 

- 

Ri = 2aUp,/pi (2.7) 

are large. This is because the stress is then small compared to t'he inertia 
stresses whose order of magnitude is piU2. 

We can use E1,e to help us find the viscous dissipation in the motion given by 
ki and thus obtain a first approximation to the drag on the drop. When -Fro 
acts on the fluid, its rate of working plus the rate of working of the pressure 
forces a t  infinity which are driving the flow must be equal, in a steady state, to 
the net viscous dissipation. But, since q, is symmetric about the plane 6 = +n, 
the forces at infinity can do no net work, and the total rate of dissipation, a, is 
given by 

6 = In ~~(g ,~) , .=~2na2s in  e d e  

- 

(2.8) 0 

= 12 U2na(p, + &). 

t The idea of representing the difference between an approximate and an exact solu- 
tion as a force acting on the former is due to Lamb (1932, p. 609). 
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Thus if we define the drag coefficient C, by 

$po U2na2C, = drag force = 6 / U ,  

371 

we obtain 

Levich (1949) obtained the special case ,ul = 0 of this result, corresponding 
physically to a vacuous (or, to a good approximation, gas) bubble. 

3. The stress -induced boundary layer 
If at  some instant the imposed stress -Fro of the previous section is turned off, 

the surface of the drop will begin to act as a source of vorticity which will im- 
mediately start to diffuse away. Vorticity which diffuses outwards will be con- 
vected towards the back of the drop and then carried off downstream. Vorticity 
which diffuses inwards will, however, remain trapped inside the drop, and will 
eventually diffuse to every interior point. Thus the interior vorticity will be 
modified everywhere from the value implied by 

Since the Reynolds numbers are large, vorticity gradients? can exist in the 
final steady state, only (i) in a thin layer around the drop’s surface, whose thick- 
ness is O(aR:*) for the same reasons as in DM, and (ii) in external and internal 
wakes along the axis of symmetry. Outside the drop and its boundary layer and 
wake there will still be potential flow; inside it (and away from the internal 
boundary layer and wake), Batchelor’s (1956) arguments will apply, and the 
flow will be Hill’s spherical vortex, but with strength slightly different from its 
previous value because of the vorticity diffused inwards during the transient 
motion. 

where qt is the actual velocity field and qi that of the first approximation qi. 
The role of the remaining term, qi, is evidently to annul the stress discontinuity 
O(pi Ula)  which the velocity field qi has at  the drop surface. 

q! = q . + q .  Let us write z a a )  

As vorticity gradients must be confined to the thin boundary layer of thickness 
O(aR;*), 

Pcilqill(aRi9 = 0(Pi  U b ) ,  
giving 

so that the perturbations to the basic flow are indeed small. 

the same way as for the spherical bubble. On writing, for i = 0 or 1, 
The boundary-layer equations for the perturbations can be derived in exactly 

(3.2) 

where qio is the 8-component of the perturbation velocity qj, and Si, ui and y are 
non-dimensional, it can be shown (see DM) that ui satisfies the equation 

S! = ,ui/(piaU) = 2/Ri, 

Pie = USiui, 

r - a  = aJiy, 

3 a  2ui 3 a 3%. 
2 ae ay 280 2Y2 
-- (uisinO)-3ycose - = --(ursine)+-’, (3.3) 

t Strictly, gradients of (vorticity)/r sin 8. 
24-2 
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where up are the asymptotic values of ui at the inner (i = 1) and outer (i = 0) 
limits of the boundary layer. 

Consideration of the exterior flow shows at  once that up = o(1). The interior 
flow is a perturbed Hill's vortex, so we have, in all, 

uo" = 0, 

ur = gCsin8. 
(3.4) 

We do not at  this stage know the exact strength of the vortex, which is (1  + C6,) 
times its value for an ideal fluid, but we can say, in view of ( 3 4 ,  that Cis of order 
unity. It seems plausible physically to guess that the actual vortex will be slightly 
retarded, making C negative. This will be confirmed later when C is evaluated. 

The velocity field must be continuous across r = a, which makes 

6, lim u,(y,8) = 6, lim ul(y,8), 
Y+O + 2/->0 - 

while the condition of continuity of stress across r = a leads to 

(3.5) 

Equation (3.3) is parabolic, so that, as well as (3.4), (3.5) and (3.6), a boundary 
condition on some line 8 = constant is needed. To deduce it we must discuss the 
overall flow pattern (figure 1). 

As we have seen, vorticity which diffuses inwards will be swept forward along 
the internal wake and will re-enter the interior boundary layer near the front 
stagnation point of the drop. The wake is effectively inviscid, on account of its 
breadth which is O(aR-a), or O(R+t) times that of the boundary layer. (DM's 
argument establishing this result for the external wake of a bubble still holds 
here.) The vorticity which leaves the interior boundary layer a t  the rear stagna- 
tion point therefore re-enters that layer unchanged, to a first approximation, at 
the front stagnation point. This is our required condition, together with the ob- 
vious one that no vorticity enters the boundary layer from outside the drop a t  
the front stagnation point. 

To apply it, however, we must discuss the way in which the boundary layer 
separates from the surface of the drop at  the rear and reattaches at  the front 
stagnation point. The dynamics of the separation was examined in DM for the 
special case of a vacuous bubble, and it was shown that in the separation region, 
which extends to a distance O(aR-B) from the stagnation point, the flow was 
inviscid. The reason is that the large curvature of the streamlines there introduces 
large inertial forces, while the viscous forces, which depend mainly on the thick- 
ness of the region, are not correspondingly increased. Moreover, the velocity 
field is still only slightly disturbed from the first approximation in the separation 
region if the Reynolds number is sufficiently large. This fortunate circumstance 
(which does not obtain in the corresponding two-dimensional flow: see Harper 
(1963)) is due to the fact that the vorticity is weakened by the contraction of the 
vortex-lines as they approach the axis of symmetry. 

As the internal wake is also inviscid, we can assert that in the stagnation re- 
gions of the drop and the internal wake joining them, vorticity is convected with 
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negligible diffusion along the streamlines of the first approximation to the flow. 
This implies that in the stagnation-wake region the vorticity w satisfies the equa- 
tion 

It was shown in DM how Bi($J could be determined by matching to the bound- 
ary-layer solution. 

We thus attack the problem in the following way. First we solve the system 
(3.3)-(3.6), imposing a t  8 = 0 zero ‘input’ of vorticity for y > 0 and arbitrary 
input for y < 0. That determines the output distribution at  6-+7r, and (3.7) 
then requires that the input and output vorticity distributions be the same. This 
imposes a condition on the input distribution, which will appear in the form of 
an integral equation. 

Let us now turn to the details. It helps to  transform (3.3) into the diffusion 
equation, which we do by the method of Chao (1962). With the substitutions 

(3.8) 

(3.9) 
(3.10) 

equation (3.3) becomes aftlax = ayi/ay2. (3.11) 

The continuity condition for velocity (3.5) becomes 

Jo lim f , (X ,  Y )  = 8, lim fl(X, Y )  +&V,sin2 8 ( X ) ,  (3.13) 
Y + O +  E’+O - 

where 8 ( X )  is found by solving the cubic equation (3.9) for cos8, which gives a 
unique 8 in 0 < 8 6 7~ for each X in 0 < X < Q.  The continuity condition for 

afo V l  (3.13) 
stress (3.6) gives 

po lim - = p, lim -+ 3(p0++p,). 
Y+O+ ay  ay  

The definition of u1 and (3.10) obviously require that 

lim fo(X, Y )  = lim fl(X, Y )  = 0. 
r + m  IT+- m 

(3.14) 

- 
Finally, because $i - gJJiU2Y (3.15) 

near both 8 = 0 and 8 = n, it can be shown, by symmetry of the inviscid stream- 
function gi about the equatorial plane of the drop, and from equation (3.7) 
which implies that perturbation vorticity is carried up the inner wake from the 
rear to the front stagnation region without change, that 

fl(0, Y )  = fl(-u,, Y )  = y( Y ) ,  say, for y < 0, ( 3 W t  

where X ,  = 3, the value of X in (3.9) at 8 = 7r, and where we have, with conse- 
quences to be examined in detail in $$6 and 7, related the distributions a t  X = 0 
and X = X ,  rather than those at B-f < X 4 1 and R-% < X,- X 4 1, as would 
be strictly required (see figure 1). From (3.9), 

X - Q04 near 8 = 0 ,  X , -X  N Q(n-8)4near 8 = 7 ~ .  

t This consistency condition also ensures that the pressure is single-valued. 
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The differential equation (3.11) must now be solved with boundary conditions 

f o ( O ,  Y) = 0 on Y > 0, (3.17) 

f d 0 ,  Y) = y ( Y )  on y < 0, (3.18) 

The solution is straightforward but lengthy, and the details are deferred to the 

(3.12) to (3.14) and initial conditions 

where y( Y) is still to be determined. 

appendix. We obtain 

fO(X> Y )  = - 4(6P* + 9Pll xw y12m + % P l ~ , C ~ ( X ,  Y))l(%Pl+ fL%) 
0 

+ Pl4  __ s y(Y')exp(-(Y- Y')2/4X}dY, (3.19) 
&p1+ 81po (7rX)i - CO 

(3.20) 

where 

in the notation of Carslaw & Jaeger (1959), and 

$(t)  = n4e-t' - t erfc t = i erfc t (3.21) 

(3.22) 

The consistency condition (3.16) then leads to the following integral equation 
which must be satisfied by y( Y )  : 

We observe that, at  this stage, the constant C which gives the strength of the 
spherical vortex is still unknown. But we have not) yet used (3.14) in conjunction 
with (3.16), which makes y( Y) satisfy 

lim y ( Y )  = 0. (3.24) 

It will be seen in $5 that this constraint on the solution of the integral equation 
determines C uniquely. 

17--m 

4. The drag calculated from the wake structure 
The functions B,(@J defined in (3.7) determine the structure of the stagnation 

regions and of the internal and external wakes. If the external wake is known, it 
should be possible to calculate a first approximation to the drag by considering 
the momentum defect in the wake. The result should agree with that given by the 
dissipation argument of $ 2 ,  so that, in effect, one has a test of the overall dy- 
namical consistency of the proposed flow. First, we obtain the function Bo(po). 
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As the vorticity in the exterior boundary layer is, to a first approximation, 
i3qos/ar, we find from (3.7) and (3.15) that 

U 
Bo(+U60a2Y) = s j ’or(Xe ,  Y) .  (4.1) 

It can easily be shown (Moore 1965) that the drag force D can be expressed as 

and on inserting (4.1) and partially integrating, using the fact thatfo(X, co) = 0, 
we have 

If  we substitute for fo and carry out the integration we have 

On integrating the integral equation (3.23) from - co to 0 we find that 

and on substituting into (4.4) we recover the expression for C, given in (2.9). 
The terms in C cancel out, as they must; we have found only a first approximation 
to the drag, and altering C by a finite amount can alter the drag only in higher 
approximations. 

5. The solution of the integral equation 
If we introduce a new variable z given by 

3 
(5.1) z = -g(x,)-*y = -__ y 

442 ’ 

and define Y ( Y )  = d z ) ,  

the integral equation (3.23) becomes 

.-&Im g(x’){e-(2--’)2+hUe-(“+2’)2}dz’-g(z) = hb#b(z) + ~ + , ( z )  = x ( z ) ,  say. (5.3) 

The constants A,,& are defined in terms of the dimensionless ratios V, V’ of 
fluid properties given by 

0 

v = Po/P1, V’ = (POPO/PlPl)~ = Po &l/Pl 807 (5.4) 

as 
1 -  V’ 2 V + 3  
1 + V ”  2V‘+3’ 

h b  = ~ (5.5) 

and 
2 4 2  (2 P’ + 3) 

V‘+1 +(ZL = 
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3 V' 
2 ( V  + 1 )  

$he(z) = --y-- N(X, ,  - 2 x ; q  

Our procedure for solving (5.3) was to write 

g(z)  = A,g,(z) +Cgc(z ) ,  
so that gb(z )  must satisfy 

and g,(z) a similar equation with b replaced by c. The solutions are rendered 
unique by requiring that &(z)  and g,(z) have finite limits as z -+ co; it is not diffi- 
cult to show that eigen-solutions exist, but none which are finite a t  infinity if 
8' > 0. When gb(z)  and g,(z) have been found, we obtain C/A, from the require- 
ment (3.25) that g(co) = 0, which gives 

(5.10) 

The integral equations were solved numerically for A, = $, $ , O ,  - 8 ,  -$, - 1, 
i.e. V' = 3 ,  &, 1,2,5,00.  Before describing the method, we observe that, if A, = 0,  
i.e. popo = ,ulpl, the equation is greatly simplified, since the second exponential 
term in its kernel vanishes. The resulting integral equation can then be attacked 
by the Wiener-Hopf method, though on account of the complexity of q5Jz) a 
solution in closed form is impracticable. What can be done is to solve the homo- 
geneous equation 

n-&J-m e-(Z-"'Ph(z')dz' = h(z), (5.11) 
0 

and to determine C/hb from the easily established result 

j; h ( z ) { n , W )  + C#,(z))dz = 0. (5.12) 

However, the details of the solution of (5.11) are rather lengthy, and will be 
described elsewhere. The value of C/hb obtained from (5.12) gave a useful check 
on our numerical procedure. 

Equation (5.9) and its analogue for g,(z) were solved iteratively. Using values 
of z equally spaced a t  interval A, we put an assumed set go(z) of values of g(z) in 
the integral, which was evaluated by Simpson's rule, to find a new set, g,(z). A 
new function, g2(z)  = g,(z) +constant, was then obtained from g,(z) by requiring 
that 

g 2 ( z )  erfc zdz = - ~ + "'Irn X ( z ) d z ,  
v ' o  

(5.13) 

which is found by integrating (5.3) from 0 to co. Then go@) was replaced by 

so@) +92(4 + k{g2(4 - go(41, (5.14) 

and the cycle repeated. In  (5.14) k is a constant chosen to make the iteration 
converge as fast as possible; the best value found was 0.78. Forty iterations 
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usually sufficed to give the values of g(z) correct to four significant digits. To that 
accuracy, each g,(z) could be assumed constant for z > 5 ,  and when ~ ( z )  = &,(z) 
the steplength A could be taken as 0.2. Because q5c(z) exists but has no derivative 
at the origin, the error in the numerical integrations is then of order A2 rather 

V'. . . 0.2 0.6 1.0 2.0 5.0 co 
3A,. . . 2 1 0 -1 -2 -3 

z g&) 

0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
a3 

V'. . . 
3A,. . . 

2 

0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
00 

- 22.18 
- 21.53 
- 21.14 
- 20.94 
- 20.85 
- 20.82 
- 20.82 
- 20.82 
- 20.83 

- 20'83 

- 10.868 
- 10.239 
- 9.865 
- 9.669 
- 9.585 
- 9.558 
- 9.556 
- 9.561 
- 9.565 
- 9.567 

- 9.567 

- 7.071 
- 6.470 
-6.112 
- 5.924 
- 5.843 
- 5.817 
-5.815 
- 5.819 
- 5.823 
- 5.825 
- 5.826 
- 

- 5.826 

- 5.153 
- 4.581 
- 4.240 
- 4.060 
- 3.982 
- 3.957 
- 3.955 
- 3.959 
- 3.963 
- 3.965 
- 3.966 

- 3.966 

- 3.985 
- 3.444 
-3.119 
- 2.949 
- 2.874 
- 2.850 
- 2.848 
- 2.852 
- 2'855 
- 2'857 
- 2.858 
- 2.857 
- 2.857 

- 3.192 
- 2.682 
- 2.376 
- 2.214 
- 2.143 
- 2.120 
- 2.118 
- 2.122 
- 2.125 
- 2.127 

- 2.127 

TABLE 1. Solutions of the integral equation (5.9) for g&) 

0.2 0.5 1.0 2.0 5.0 00 

2 1 0 -1 -2 -3 

g&) 

- 0.8614 
- 1.027 
- 1.054 
- 1.057 
- 1.054 
- 1.051 
- 1-050 
- 1.049 

- 0.6950 
- 1.027 
- 1.084 
- 1.090 
- 1.084 
- 1'079 
- 1.076 
- 1.075 

- 0.5258 
- 1.026 
- 1.114 
- 1.124 
- 1.116 
- 1.108 
- 1-104 
- 1'103 
- 1.102 
- 1.103 
- 

- 0.3537 
- 1.025 
- 1.144 
- 1-159 
- 1.150 
- 1.140 
- 1.134 
- 1.132 
- 1.132 
- 1.133 
- 

- 0.1785 
- 1.023 
- 1.175 
- 1.196 
- 1.186 
- 1.174 
- 1.167 
- 1.164 
- 1.164 
- 1.165 
- 

-. - - - - 
- 1.049 - 1.075 - 1.103 - 1.133 - 1.165 
19.86 8.900 5.282 3.500 2.452 

19.45 8.839 5.303 3.536 2.475 

TABLE 2. Solutions of the integral equation (5.9) for g,(z) 

0 
- 1.019 
- 1.207 
- 1.235 
- 1.223 
- 1.210 
- 1.202 
- 1-199 
- 1.298 
- 1.199 
- 1.199 
- 1.200 
- 1.200 
1,772 

1.768 

than the usual A4 for Simpson's rule, and for ~ ( z )  = $Jz) the calculations had to 
be performed for A = 0.2 and A = 0.1, and the results extrapolated to A = 0. 
(A few values of gJz) were also found with A = 0.05 to check on the extrapola- 
tion.) 
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The results are given in tables 1 and 2, together with the values of ga(.o)/g,(co) 
for the stated range of values of V’. As 2-5( V’ + 2)/ V’42 turns out to be a fairly 
good simple approximation to g,(co)/g,(co), equation (5.10) implies that the in- 
ternal circulation is less than that of Hill’s classical theory by a factor approxi- 
mately equal to 

- (5.15) 1 + c s  - I---- - 1------ 

provided that this factor is nearly unity. If it  is not, the Reynolds number is 
obviously not high enough for the perturbations to be really small, and higher- 
order terms are likely to be important. That is likely to happen if V is small, so 
that our theory is not applicable to drops falling in a gas or in a much less viscous 
liquid. 

It is of some interest that both gb(z)  and g,(z) oscillate towards their asymptotic 
values. This appears to be a general property of boundary-layer solutions around 
regions of closed streamlines, having been found in completely different contexts 
by Mills (1965) and Burggraf (1966). The latter explained it by considering the 
propagation of ‘waves’ of vorticity away from the bounding surface through the 
boundary layer. 

6. The nature of the flow near the stagnation points 
In  this section, it is shown that the flow field near the stagnation points has a 

complicated structure of inner viscous boundary layers, determined by the main 
boundary layers calculated in $03 and 5. (Near the front stagnation point, the 
inner layer is really the initial portion of the main layer.) The viscous dissipation 
in these inner layers does not contribute to (2.9), but it must be included when 
seeking higher approximations to the drag, except for a gas bubble whose in 
ternal density and viscosity are negligibly small. In  fact, on this account the 
correction to (2.9) is O(R-$ln R), in contrast to the O(R-g) correction to Levich’s 
(1949) result for gas bubbles, found in DM. (For the purpose of these order-of- 
magnitude considerations, we do not need to distinguish between R, and Rl.) 
However, in the range of Reynolds numbers of interest, most of the dissipation 
actually comes from the boundary layer and external wake already described. 
Thus a precise treatment of the inner viscous boundary layers is not needed. In  
this section we describe their structure in general terms and in $7 we give a 
momentum-integral treatment of them which is sufficiently accurate for the 
purpose of estimating their dissipation and showing that it is negligible. 

Let us start with the rear stagnation region. It was shown in $ 3  that when 
rr - 8 = O(R-*) the boundary-layer equations would break down, to be replaced 
by an inviscid equation which prescribes the perturbation vorticity as a function 
of the zeroth-order streamfunction $ (see equation (3.7)). This conclusion must 
apply to both the exterior and interior rear stagnation regions of the drop. 
The perturbation velocity field is determined from the perturbation vorticity 
field by requiring that it have zero normal component at  the drop surface, zero 
radial component on the axis of symmetry, and that it tend to zero outside the 
stagnation region. Clearly there is no reason to expect that the tangential com- 
ponents of perturbation velocity on the two sides of the drop surface, qh;’ and 

2.5 V’+2 2 V + 3  2.5 V’+2 2 V + 3  
‘- Rt 8‘ 2V‘+3  Ri V 2V’+3’ 



Motion of a drop at high Reynoldds number 379 

q$$) say, will be the same. If they differ, there must be an inner viscous boundary 
layer between the two stagnation regions (figure 2a) .  

In  the case of the gas bubble (see DM), the interior motion can be consistently 
ignored, when calculating the drag and distortion. Consequently, so can the dif- 
ference between qi:) and q#, and the inner viscous boundary layer at  the rear 
stagnation region need not be considered. 

E . 1  1 E 

T 
0 (R-7 a) 

T 
O(R-ia)  

FIGURE 2a FIGURE 2b 

FIGURES 2a,  b. Details of the flow patterns near the stagnation points (front, figure 2 a ;  
rear, figure 2 b ) .  Viscous boundary layers are shaded as in figure 1. 

The boundary-layer solutions (3.19) and (3.20) can be shown to hold for 
n - 8 9 R a ,  by using the estimates for the terms neglected in the full equations 
given in DIM, so that any discontinuity in tangential velocity will be negligible 
until n - 8 = O(R-*). Thus the effective length of the inner viscous boundary 
layer is O(aR-)), while its thickness can be shown to be O(aR-*), as usual. The 
tangential components of perturbation velocity are O( UR-Q) in the stagnation 
regions, and the viscous dissipation rate in this inner viscous boundary layer is 
then readily estimated to be O(pU3a2R-g). 

Figure 2 b shows the details of the rear stagnationregion. 11 and EE are stream- 
lines of the basic flow, for which $ = O( Ua2R-+). They enclose the region con- 
taining perturbation vorticity convected out of the boundary layer on the drop 
surface, and their equations are of the form 

(6.1) 

This leads at once to the characteristic linear size aR-8 €or the stagnation regions 
as shown in DM, 9 3. The shaded region is the inner viscous boundary layer, and 
it starts gradually as the difference &) - &) grows from its value o( U R a )  for 
7~ - 8 9 R-i. A A  is a typical streamline of the basic flow which passes through 
the inner viscous boundary layer to emerge a t  X. Clearly X has co-ordinates 
n - 8 = O(R-4) and r - a = O ( a R a ) ,  making $ = O( Ua2R-%) < U a 2 R ~  on AA.  
This fact is important, since it implies that for large R a negligible proportion of 
the streamlines which enter the wakes have passed through the inner viscous 

(r - a)  (n - 8)2 = O(aR-*). 
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boundary layer. Thus the matching procedure used to determine the wake 
structure, which assumes no diffusion of vorticity across these streamlines, 
remains valid. 

At the forward stagnation point the situation is similar. In  this case, however, 
there is no perturbation in the exterior stagnation region, so that q$$) = 0. But 
qi;) is just minus its value at  the corresponding point of the interior rear stagna- 
tion region, since our consistency condition (3.7) on the interior perturbation 
vorticity implies that the two interior stagnation regions are identical, apart from 
obvious sign changes. Consequently q$'$ - q;;) remains of order UR-* for 0 9 R-*, 
and the dissipation associated with the forward inner viscous boundary layer is 
of order greater than pU3u2R-%. We give its actual order presently. 

Figure 2a shows details of the forward stagnation region. As we have seen, the 
forward inner viscous boundary layer extends beyond the stagnation region it- 
self, where 0 = O(R-$). It becomes eventually the boundary layer proper which 
was described in $ 3. If M, M2 M,M4 M5 is a cross-section of the flow at some 6' in 
the range R-3 4 0' < 1,q'p) and above are the tangential velocities a t  M2 and 
M4, and their difference is reflected in the discontinuity of the functions f i ( O ,  Y )  
of (3.17) and (3.18). We see that (3.17) is really valid on M,M, and (3.18) on 
M4M5, i.e. Y 9 (3'2, - Y 9 Prespectively, but that in the limit, as R+m, 8' may 
+O,  and we can replace these conditions by Y > 0, Y < 0. Moreover, almost all 
streamlines crossing M3M5 have not passed through any region where significant 
viscous forces are acting after leaving the corresponding section N3 N5 in the rear 
stagnation region (figure 2a). This is because M3M4/M,M, = O(l2-i). Thus the 
consistency condition (3.16) on the vorticity is asymptotically correct in the limit 
R+m. 

Thus we have an a posteriori justification of the solution given in $$3-5. It 
remains to consider the order of magnitude of the viscous dissipation associated 
with the boundary layer near the front stagnation point. 

On making the usual boundary-layer assumptions, we find that this is of order 

where, as before, RiB < 0' < 1 and where we have carried out in order of magni- 
tude the integration across the boundary layer. 

Now it follows from the theory of $53 and 5 that 

&) = O( URi*/0)  (6.3) 

&) = O( URi* ) ,  (6.4) 

for RiB 4 0 < 8', and from the analysis of $7 that 

uniformly in 8, for 8 = O(R,*). If we estimate the integrand in the dissipation 
integral (6.2), using these orders of magnitude, and assuming that in the boundary 
layer qie = O(q$Y), we find that the dissipation is of order 

which is of order pi U3a2Rf1n R,. We will recover this result in $8 and get a 
precise value of the numerical coefficient. 
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7. The inner viscous boundary layers 
In  order to estimate the viscous dissipation associated with the inner viscous 

boundary layers at the stagnation points, we must determine their structure. 
We will use a momentum integral approach rather than attempt an analytic 
solution. Since the dissipation associated with the inner viscous boundary 
layers turns out to be much smaller than that of either the principal boundary 
layer or the wake, the error in the net dissipation introduced by this approxima- 
tion is relatively unimportant. 

The first step is to determine the exterior velocities q$,'$) and ql$) defined in $6. 
We consider in detail only the neighbourhood of the front stagnation point : the 
changes in our treatment needed to get qb$) and q# at the rear stagnation point 
are minor and are given later. 

Near the stagnation point, curvature of the drop's surface can be ignored, which 
allows us to use a local system of dimensionless cylindrical polar co-ordinates 

(7.1) 
(s,, xl) where 

so that s1 = 0 is the axis of the drop and x1 = 0 its surface. The variables z1 and 
s1 are thus O( 1) in the stagnation region. We also define a local dimensionless 
stream function +, by the equations 

u - r = u$z,, e = $sl, 

following DM, equations (3.18) to (3.21), except that our z1 is measured in the 
opposite direction to DM's z. An argument analogous to that of DM, $ 3, with our 
equations (3.7), (3.15) and (5.2), immediately gives 

where (7.5) 

and 

The boundary conditions of (7.4) are that s1 = 0 and z1 = 0 be both streamlines, 
+ = 0 for definiteness, and that both velocity components should tend to zero 
at the origin and infinity (see DM for the reasons). By an obvious use of hydro- 
dynamic images, and with the help of Lamb (1932, Art. 161 equation (14)) 
giving the streamfunction of an isolated vortex ring, which we use as a Green's 
function, we find 

W l  
~ (sl, 0 )  = s2s,ke-kz1Jl(ksl) Jl(ks)b,(s2zl)dz,dsdk, (7.7) 
8% 0 

which gives qls (by equation (7.3)) on the surface, x1 = 0, as a function ofas,. 
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Now it follows from the theory of $43 and 5 that 

for 

Hence, for consistency we require that a$,/az, --f - g(0 )  as s1 + 00. This is readily 
verified from (7.7), for, if we put 

k = K/S1, S = Sir, Z1 = </$, 
that equation becomes 

in the limit as s1 + 00, and this last integral 

because J,(x)dx = 1 and bl(t)  = 

Near s1 = 0 ,  on the other hand, we can replace J,(lcs,) by +ks, in (7.7) to find a 
first approximation to a$.,/&,. That gives 

(7.9) * (a1, 0) N alsl, 2 i.e. qle - U T ~ ! ~ , O ,  
3x1 
1 ' "  m w 

s2k2e--kzl J1( ks) b,(s2x1) dx, ds dk.  
"1 = 3 J j0 So where 

We note that this expression for a1 can be transformed, by putting cr = zks, 
K = z,Bk, < = z t  and changing the order of integration, to 

The K integral is known (Watson 1944, p. 386, equation (6)),  and we obtain finally 
after a little manipulation - 

m 

0 
a, = tQ(1 +t2)-5dt 

00 

+ 0.57491 b,(x3)dx, 
0 

(7.10) 

for the (non-dimensional) rate of strain in the perturbation flow very near the 
front stagnation point. 

We now consider the neighbourhood of the rear stagnation point. Obviously 
equations (7.1) to (7.10) all hold for the interior flow there if 8 is replaced by #, 

(7.11) 
where $4 = n-8. 
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Analogous equations hold for the exterior flow if we replace subscripts 1 by 
0 (except on the Bessel functions), the function g(z)  =f l (Xe ,  Y )  by go(z) = 

r - a = a ~ t z ~ ,  (7.12) 
fo(X,, Y ) ,  and define zo by 

so that zo and z1 are both positive in their regions of definition. This makes (7.7), 
(7.9) and (7.10) carry over directly to the exterior flow but causes sign changes in 
the analogues of (7.5) and (7.6) as follows: 

z = - 3 s ; z 0 / q 3 ,  (7.13) 

(7.14) 

We now turn to the problem of determining the structure of the inner viscous 
boundary layers. 

The co-ordinates X ,  Yare singular at  the stagnation points, so we return to the 
dimensionless physical co-ordinates y ,  8 defined in (3.2), in terms of which the 
boundary-layer equation is (3.3). If we define a non-dimensional flux Q by 

a2 a2 

77 bo(s;zo) = -- Bo(~Ua2Sos;zo) = -5Bo($o). 

ro  

we find from (3.3) that near the front stagnation point 

3 d  au au 
- - ( 8 ~ ) + 3 &  = L - - O ,  
2 de  aY ay 

(7.15) 

the derivatives on the right-hand side being evaluated at  y = 0, and near the rear 

3 d  au au, 
--($&)+3& = -L+--, 
2d$ aY ay 

stagnation point 
(7.16) 

where 9 is defined in (7.11). 
The boundary conditions a t  y = 0 are 

(7.18) 

since the other terms in the exact boundary conditions (3.5) and (3.6) are negli- 
gible in the stagnation region. 

ui = up + Ad(@) eTf"T(H),  

where the upper sign is taken for i = 0 and the lower sign for i = 1 and where 
T(0)  is a dimensionless boundary-layer thickness. The functions A,(@ are de- 
termined by (7.17) and (7.18), and we then easily find from (7.15) and (7.16) 

We assume profiles 

that 
(7.19) 

for the front inner viscous boundary layer, in which q# = U&,ur,  and that 

(7.20) 
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for the rear inner viscous boundary layer. (It can be shown from (7.7) that 
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for $ 9 R-6, so that the integral in (7.20) is convergent, and we incur negligible 
errors in the region $ = O(R-6) by writing its upper limit as co.) We note from 
(7.9) that T(8) is well behaved and -+ 1/46 as B - t O  while T($)-+m as $ + O ,  so 
that the rear inner viscous boundary layer is itself singular at  the rear stagnation 
point. 

We will use this approximate solution in 9 8 to  estimate the dissipation. 

8. The second-order terms in the drag 
We are now in a position to calculate the second-order terms in the expansion 

of the drag coefficient for large Reynolds numbers. We use the method given in 
DM which involves calculating the viscous dissipation in the boundary layers and 
wakes. Equation (4.18) of DM, originally derived for a region in which there are 
small perturbations to an irrotational flow, is easily shown to be true also for small 
perturbations to a Hill’s spherical vortex (or any other axisymmetric flow with 
closed streamlines, obeying Batchelor’s circulation condition and bounded by a 
stream-surface). 

Using this method, we find for the drag coefficient CD 

where the fiare writtenasfunctionsofp = cos8andz, whichis - 3(r-a) / (4~42/2) ,  
from (3.2), (3.8) and (5.1). 

The first term in the square .brackets is the wake dissipation. We saw in $6 
that the inner viscous boundary layers do not affect the matching procedure 
which determines the wake structure, so that this expression for the wake dissi- 
pation (which is proved in DM) is valid, although, strictly, the integrand should 
be {fo( - 1 + yR;!, z ) } ~  where 1 4 7 < R$. This is because the matching is per- 
formed at  a value of 8 where the boundary-layer solution of $ 3  is valid (figure 2a);  
however, the error introduced in CD by evaluating f,, at p = - 1 is of smaller 
order than O(Rg8).  

The second term is the dissipation associated with the extra circulation in the 
Hill’s spherical vortex and it presents no problems. 

It is the p-integrations which cause trouble. Let us first note that the fi are 
continuous and (afi/az)2 integrable at  p = - 1, while as p-+ 1, if z+ 0 in such a 
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and 
(8.3) 

Thus the integrals of f, and fl converge at  /L = 1, while those of (LJJo/8z)2 and 
(afl/az)2 diverge there. 

Now the error info or fl due to the failure of the theory of $ 3  is O(1) and is 
confined to small ranges - 1 < ,u < - 1 + O(R-f) and 1 - O(R-3) < ,u < 1. Thus 
since the integrals offo,ft andfi are well behaved at  p = 2 1, we can neglect the 
corrections to fo and fl introduced by the inner viscous boundary layers when 
these integrals are being computed. It remains only to consider the integrals of 

The theory of § 3 gives the order of (afi/az) to be unity when p-+ - 1. This is an 
underestimate and is caused by the underestimate of normal derivatives im- 
plicit in the neglect of the inner viscous boundary layers. Actually, from the 
discussion of the inner viscous boundary layers, (afi/ay) is O( 1) there, and, since 

(%/W2. 

dz = -+(x,)-aq"y, 

it  follows that afi/az is O(R*) in the rear stagnation region. Thus the contribution 
to /J(afi/az)2d,udz from the range - 1 < ,u < - 1 + O(R-*) is of order 

R%R-+R-$ = I  

so that, as we saw in $ 6, we must allow for the dissipation in the rear inner viscous 
boundary layer. In  view of the above discussion, we can do this to the required 
order of accuracy by integrating from ,u = - 1 with the explicit formulae for 
fi, (3.19) and (3.20), and simply adding on the dissipation from the rear inner 
viscous boundary layer. 

In  the front stagnation region, we see from (8.2) and (8.3) that the boundary- 
layer theory of $ 3  gives afi/az to be O(R+*), but makes afi/az+co as ,u+ 1, where- 
as the correct derivatives are O(R*) and bounded. This spurious infinity is due to 
the approximation to the starting profile which is strictly valid only if R = 00. 

(See $56 and 7 for a discussion.) Thus we can employ (3.19) and (3.20) only up 
to ,u = 1 - yR;*, where 1 < 7 < Ri), and we must evaluate the contributions from 
the range 1 > p > 1 - yR;* from the solution of § 7 for the inner viscous boundary 
layer. 

Now from (8.2) and (8.3) 

so that, as anticipated in $ 6, there is a logarithmic term in the correction to the 
first-order drag. However, the contribution of this term is rather small for the 
Reynolds numbers which occur in practice. (The highest R, values for approxi- 
mately spherical drops are only a few hundred, so that ln R, < 7.) 

The contribution to the term in square brackets in (8.1) for the dissipation 
35 Fluid Meoh. 32 
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in the front inner viscous boundary layer can be approximated by using the 
momentum integral solution, as 

where T(8) is defined in (7.17), and where 8* is O(R-*). We can estimate the in- 
tegral by using an approximation to &). For all 8 < 8* we replace q$) by U@a,O, 

v’... 0.2 0.5 1.0 2.0 8.0 00 

3&.. . 2 1 0 -1 - 2  -3 

C1 0.0275 0.0935 0.177 0.262 0.335 0.390 
Ca 8.89 7-56 6.15 5-15 4.22 3.56 
c3 - 9.72 - 9-00 - 8-22 - 7.41 - 6.59 - 5.77 

TABLE 3. The second-order terms in equation (8.7) for the drag coefficient. 

which by (7.9) is exactly valid only for 8 < 8*, and we require that, at 8 = 8*, 
this linear approximation to &) agrees with the asymptotic form (7.8). Thus we 

which fixes 8”. Using this approximation the contribution to the square bracket 

1 in (8.1) is approximately 

[ F r 8 4 3 ( i +  vTj9 

which is numerically fairly unimportant, being 1-88/ln Ro times the logarithmic 
contribution (8.4), or less than 5 yo of the terms from the wake and the principal 
boundary layer. 

A similar approximation can be used for the rear inner viscous boundary layer 
and the dissipation there also can be shown to be small. 

We neglected these two contributions when calculating (8.7) below, which 
greatly shortens the work, though it means that our results for C, will be slightly 
too small, by an amount of the same order as the logarithmic term for Reynolds 
numbers up to a few hundred. 

On performing the various integrations numerically and collecting terms in a 
form suitable for interpolation, we find that 

3 InR ,h~( l+  V’) c - - l+ -+- i - -  D - g {  2v R,z 7” c1 

where cI, cz, c3 are the functions of A, (or of V‘) given in table 3. When V = Vf = 00, 

we recover the result of DM that C, = 48Rg1(1 - 2.21Rg4). The errors are at most 
5 yo with the steplengths of 0.2 in both z and ,u which were used for numerical 
integration; improving the results would have required excessive computer time 
as well as demanding a more detailed analysis of the motion near the stagnation 
points which would have involved tabulating functions of two variables ( V  and 
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A,) instead of one (A,). The present accuracy is adequate for comparison with the 
experiments, whose errors are of the same order, and this is the subject of the 
next section. 

9. Comparison with experimental results 
Por a fair test of our theory, it is obviously necessary to compare it with experi- 

ments on drops satisfying reasonably well the assumptions on which the theory is 

n.0 POL,, 

100 200 300 400 600 800 
1000 R, 

- 

100 200 300 400 600800 
Ro 1000 

FIGURE 4 

1, experiments (Winnikow & Chao 1966): 

FIGURE 3 

FIGURE 3. Bromobenzene drops in water. 
I ,  

. .  
2, first-order theory; 3, second-order theory without the logarithmic term; 4, second-order 
theory with the logarithmic term. 

FIGURE 4. Chlorobenzene drops in water. 1, experiments (Winnikow & Chao 1966); 
2, first-order theory; 3, second-order theory without the logarithmic term; 4, second-order 
theory with the logarithmic term. 

- 5 0  100 150 200 30046500 
RO 

FIGURE 5. A,  water drops in Fino1 (Elzinga & Banchero 1961); B, ethyl chloroacetate 
drops in water (Licht & Narasimhamurty 1955). 1, experiments; 2, first-order theory; 
3, second-order theory without the logarithmic term; 4, second-order theory with the 
logarithmic term. 

26-2 
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based. The most important points are that the interface must be uncontaminated, 
and that the Reynolds number be both high enough for perturbation quantities 
to be small and low enough for the drop to be nearly spherical. Contamination 
is clearly present if the experimental drag coefficients are close to those of rigid 
spheres over a range of Reynolds numbers, and a graph of C, against R, gives an 
easy and quick check on this. The other criterion is only a little more complicated; 
we take the upper limit of R, for nearly spherical behaviour to be that of the 
experimental minimum value of C,. This seems justified because Winnikow & 
Chao (1966) showed in their figure 4 that instability does not set in until still 
higher Reynoldsnumbers for drops, and Moore (1965) showed that, for gas bubbles 
in steady flow, the minimum and subsequent rapid rise of C, with R, can be ex- 
plained in terms of a gradual transition from spherical to spheroidal shape. We 
assume merely that Moore’s explanation of the minimum holds also for drops. 
Having found this upper limit of R,, we predict the corresponding value of the in- 
ternal circulation from (5.15). Our theory should then holdif the circulation factor 
(1 + CS,) at  this value of R, is close to unity, and it is clearly not applicable if it 
turns out to be small or negative. That would mean that the ‘small’ perturba- 
tion quantities were of the same order as, or greater than, those of the basic flow. 

On examining in this way the experimental results of Hu & Kintner (1955), 
Licht & Narasimhamurty (1955), Klee & Treybal(1956), Keith & Hixson (1955), 
Elzinga & Banchero (1961) and Winnikow & Chao (1966), we found only four 
liquid combinations with satisfactory purity and with 1 + CS, greater than + at 
minimum drag coefficient, namely Licht & Narasimhamurty’s drops of ethyl 
chloroacetate in water, Elzinga & Banchero’s drops of water in Finol, and Winni- 
kow & Chao’s drops of bromobenzene and chlorobenzene in water. The respective 
values of 1 + CS, at  minimum drag coefficient were 0.58, 0.90, 0-65, 0.75. As V 
and V’ were not given separately by Winnikow & Chao, but only the combination 
b = ( 2  + 3 / V )  (1 + Ill”), values of V and V‘ were calculated by assuming the 
densities of the liquids to be those given in the Handbook of Chemistry and Physics 
(Hodgman 1960)’ and using V’ = (p, V/pl)* to obtain a quadratic equation for 
V*. The results are given in table 4, together with the predictions for (1 + CS,) 
and CD as functions of R,, calculated for all four cases mentioned above from 
(5.15) and (8.7). 

As none of the experimenters mentioned above reported measurements of the 
internal circulation, we cannot compare its value directly with that of (1 + 178,) 
given by our theory. Drag coefficients can be compared, as follows: figures 3-5 
show the experimental (curve 1) and theoretical (curves 2-4 for different orders 
of approximation) values of c, as functions of R,, plotted logarithmically on both 
axes. 

For both of Winnikow & Chao’s liquids the general trend of C, with R, is 
reasonably well shown in the range 150 < R, < 500, although the numerical 
values from our best approximation (curve 4) are from 6 to 20 yo too low. This 
is perhaps to be expected: the terms of order R;% in the theory are only approxi- 
mations, whose error is of the order of the distance between curves 3 and 4; higher 
terms have not been included at  all, nor have the effects of distortion from a 
spherical shape. The agreement of the theory with the other experiments is rather 
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worse, but their authors did not report such elaborate precautions against im- 
purities in their liquids as Winnikow & Chao, and the Reynolds numbers were 
not so high. 

b PoIP1 v J7' 1 + cs, C D  
Bromobenzene 2.38 0.672 0.847 0.753 1 - 8.4R;* 133Rr1(1 - 10.1R;4+0.135R;: In R,) 
drops in water 
Chlorobenzene 3.27 0.903 1.25 1.06 1 - 6+6R;* 106R;l( 1 - 8.5R;*+ 0.126R;g In R,) 
drops in water 
Ethyl chloro- 2.60 0.871 0.812 0440 1 - 8.6R,$ 137Rr1(1 - 6.74R;++ 0-138R;* In R0) 
acetate drops in 
water 
Water drops 1.71 0.831 11.8 3.13 1 - 1.1Rr4 54R;l(l-2.64R;4+0.072R;* In R,) 
in Fino1 

TABLE 4. Dimensionless groups and theoretical predictions for the experimental pairs of fluids 

We conclude that the theory is a valid approximation for drops in liquids 
which satisfy the conditions of small viscosity both inside and outside the drop, 
large interfacial tension, and high purity. 

Appendix 
To solve the diffusion equation (3.11) with its given boundary and initial con- 

ditions, we first find the effects of: (i) the discontinuity of pi afi/a Y given by (3.13), 
assuming that Sifi is continuous across Y = 0 and zero at X = 0; (ii) the dis- 
continuity of Si f i  given by (3.12), assuming that piaf,/aY is continuous across 
I' = 0 and f i  = 0 at X = 0 ;  (iii) the initial values of Si fi a t  X = 0 given by (3.17) 
and (3.18), assuming that SJi and p{afJaY are both continuous itcross Y = 0. 
We then add the results of these three calculations,obtaining the value of f i ( X ,  Y )  
for the actual problem, because all the governing equations are linear. 

(i) T h e  discontinuity of pi af/a Y 
This problem is formally so similar to that of DM (equations (2.28) to (2.31)) that 
its solution must be some multiple of that given by DM, both inside and outside 
the drop.We therefore put 

where 
f i ( X ,  Y )  = aixqi( Y/2X*),  (A 1) 

$o(t) = $(t)  = n-6e-t' - t erfc t ,  

cjl(t) = $i5( - t )  = 7r-*e-t2 + t erfc ( - t ) .  
The boundary conditions then give 

(ii) T h e  discontinuity of Si f i ( X ,  Y )  

If ki(X, Y )  = pifi(X, Y )  the boundary conditions are that k,(O, Y )  = 0 and 
BL,/BY is continuous across Y = 0, together with 
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at Y = 0. Now consider the function K ( X ,  Y )  which satisfies K ,  = K Y P ,  with 
boundary conditions given by X ( X ,  0 )  = sin2 Q X )  and K(0, Y )  = 0. By Carslaw 
& Jaeger (1959, $2.5) 

as defined in (3.22). Therefore 

K ( X ,  Y )  = N ( X ,  I Yl),  

p&X, Y )  = IC,(X, Y )  = ( -  l ) iTN(X ,  Y ) ,  

(A 4) 

( A  5 )  
where, from (A3), 

(iii) The initial-value problem 

We now have to solve f i x  = fipp with the conditions 

( A  7) 

(A 8) 

( A  9 )  

fo(O, Y )  = 0 for Y > 0, < 021 
f l (0 ,  Y )  = Y ( Y )  for 

} 
where W l ( X ,  0)  = W O ( X ,  O ) ,  

g(X ,  Y )  = Sofo(X, Y )  - SJ1(X, - Y )  for 

P l f l P ( x J  O )  = POfOP(x, 

= Sl f i (X ,  Y )  - Sofo(X, - Y )  for Y ' < "1 0. 

Define 

Then g ( X ,  Y )  is an odd function of Y which obeys the diffusion equation and 
vanishes at Y = 0, so that it is regular for all X > 0, and at X = 0 

g ( 0 ,  Y )  = rt Sly( +_ Y )  according as Y 2 0. 

It is easy to see now (Carslaw & Jaeger 1959, $2.2) that 

Also, let h ( X ,  Y )  = po fo (X ,  Y )  + p I f l ( X ,  - Y )  for '>"} 
(Al l )  

Then h ( X ,  Y )  is an even function of Y whose derivative h,  vanishes at Y = 0 
and which, like g ( X ,  Y ) ,  obeys the diffusion equation and must be regular for 
X > 0, while 

The analogue of ( A  10) for this case is 

= P l f l ( X ,  Y)+POfO(X, - Y )  for y < 0. 

N O ,  Y )  = Ply( - I YI 1. ( A  12) 

h ( X ,  Y )  = A/ y( Y')(exp[ - ( Y -  4s Y''2] + exp [ - ('+ 4x Y ' ) 2 ] ) d Y ' .  (A13) 
0 

2(7rX)& -cc 

Finally, f i ( X ,  Y )  may be obtained by solving ( A  9) and ( A  l l ) ,  as 

It now remains only to add the contributions to f l  given by (Al ) ,  (A5)  and 
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(A14), to obtain equations (3.19) and (3.20). In  terms of the variables of $ 5 ,  
which are more convenient for numerical calculations, 
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[Note added in proof.] Professor K. Stewartson has recently discussed the 
integral equation (5.11) and an account of his work is to appear shortly. 


